I am grateful that Dr. Lim and his colleagues reported a case of COVID-19 that caused tertiary transmission in Korea and added information about the novel infectious disease. In this report, the authors emphasized the decrease in viral titer due to the effects of antiviral administration. However, I would like to discuss what to look out for when interpreting the causal relationship between laboratory results and therapeutic effects.

Lopinavir and ritonavir (LPV/r) is considered a promising treatment option for COVID-19 based on the 2003 SARS treatment experience. However, care should be taken when administering because there are no or little clinical evidence for the new virus, SARS-CoV-2. I have treated with LPV/r as an antiviral agent in patients with pneumonia caused by COVID-19, but the disease course has not improved dramatically. Fortunately, the patient did not develop acute respiratory failure, but it was not clear whether it was an effect of antiviral drug.

According to the Center for Laboratory Control of Infectious Diseases in KCDC, the upper limit of Ct value for positive RT-PCR of SARS-CoV-2 is 35, and the negative criterion is Ct value 37 or higher. In this case report, it is difficult to determine that the test result is positive because the Ct value is 35.66 on day 10, the day of antiviral treatment. If there was a virus, it would have remained a very low titer. Since LPV/r was administered during the virus titer reduction from 30.71 (day 9) to 35.66 (day 10), I think two consecutive negative results are more likely to be due to the natural history of the disease than to antiviral agents. Furthermore, the authors did not explain why Ct values are consistently detected near positive criteria from day 4 of treatment despite the continued use of antiviral agents.

The authors say they do not know whether the decrease in virus titer is a natural course or antiviral effect, or both. However, the authors are making a leap of logic that LPV/r
administration reduces viral load. Also, the authors explain that LPV/r administration has also improved clinical symptoms. However, The fever has already been falling from the day before, and the cough lasted for few more days. Since LPV/r was given to patients on day 10, it could not be regarded as being administered in the early stages of the disease. However, the authors argue that antivirals should be given early in the disease, based on this case. For the reasons described so far, it is difficult to say that LPV/r lowers the virus level or improves symptoms or is “recommended” for COVID-19 treatment based on this case report alone.

Regardless of the case report, I still believe that LPV/r is a promising antiviral agent for the treatment of COVID-19. However, it is clear that well-designed studies have to be carried out to build more evidence so that they can be recommended as therapeutic agents.

Research is a very important component of the response during an outbreak. But even if the epidemic is underway, we should reiterate that we should try to find evidence based on a scientific background, and be careful to advise what is not.

REFERENCES


Jaegyun Lim,1 Seunghyun Jeon,2 Hyun-Young Shin,3 Moon Jung Kim,1 Yu Min Seong,4 Wang Jun Lee,5 Kang-Won Choe,6 Yu Min Kang,6 Baeckseung Lee,7 and Sang-Joon Park8

1Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
2New Horizon Cancer Institute, Myongji Hospital, Goyang, Korea
3Department of Family Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
4Department of Internal Medicine, Myongji Hospital, Goyang, Korea
5Office of Chief Executive Officer and Chairman, Department of General Surgery, Myongji Hospital, Goyang, Korea
6Department of Infectious Diseases, Myongji Hospital, Goyang, Korea
7CancerROP, Seoul, Korea
8Department of Pulmonary and Critical Care Medicine, Myongji Hospital, Goyang, Korea

I appreciate Dr. Kim’s interest in our article entitled “Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea” and we would like to thank him for his critical comment to improve our article.1

Our report focused on the decrease of virus loads and the alleviation of the patient’s symptoms during lopinavir/ritonavir (LPV/r) administration. As Dr. Kim mentioned in the letter, it is not possible to prove whether it is caused by the natural course of the disease or by the effects of drug and there is no clinical evidence. We emphasize that broader clinical trials will be needed to reveal the therapeutic efficacy of this study.

Unfortunately, no drug or vaccine has yet been approved to treat coronavirus disease 2019 (COVID-19). Favipiravir, ribavirin, remdesivir and galidesivir can be as potential antiviral agents for the treatment.2 And many clinical trials on anti-HIV drugs, LPV/r and experimental antiviral agent, remdesivir are in the process of preparing in China (http://clinicaltrials.gov/show/NCT04261907, http://clinicaltrials.gov/show/NCT04255017).2 And there are reports that remdesivir and antimalarial agent, chloroquine effectively inhibited SARS-CoV-2 in vitro.3 If these clinical studies are successful, they can provide us with more efficient treatment options and suggest better choices for COVID-19 treatment in high-risk groups (elderly patients or patients with underlying diseases).
What we discussed in this report is the relative quantitation of virus loads with qRT-PCR during LPV/r administration and alleviation of the patient’s symptoms. Therefore, if better and broader clinical trials monitored by qRT-PCRs are designed and performed during antiviral agents administration, more accurate viral kinetics of SARS-CoV-2 can be identified and the effects of the drug being administered can be proved.

We are really hoping that the outbreak may subside in a couple of months, with the consistent efforts to prevent the spread of COVID-19 worldwide, as in the cases of SARS and MERS. In the meantime we are going to make great efforts to develop antiviral agents to treat COVID-19 as well.

REFERENCES

